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1
MICRO-CODED TRANSCENDENTAL
INSTRUCTION EXECUTION

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the priority benefit of U.S. Pro-
visional Patent Application Ser. No. 61/991,344, filed May
9, 2014, which is incorporated herein by reference in its
entirety.

TECHNICAL FIELD

One or more embodiments generally relate to a single-
instruction multiple-thread (SIMT) processing environ-
ments and, in particular, processing transcendental instruc-
tions using interpolation for resource reduction.

BACKGROUND

SIMT processors choose which instruction to execute
almost every SIMT cycle. Each instruction identifies the
resources that it requires, and when those resources are
available the instruction becomes a candidate for execution.
At each SIMT cycle a potentially different group of threads
are selected to execute.

The SIMT execution engine is augmented with micro-
coded instruction execution. Most instructions are processed
without the use of micro-code in a normal SIMT mode.
When a micro-coded instruction is detected, micro-code can
take over the execution pipeline and perform a series of
micro-code instructions, and then return the execution pipe-
line back to normal instruction processing.

SUMMARY

One or more embodiments generally relate to processing
transcendental instructions using interpolation for resource
reduction. In one embodiment, a method provides for graph-
ics processing includes generating one or more transcenden-
tal instructions in a graphics processing unit (GPU). Micro-
code is formed for processing the one or more
transcendental instructions in the GPU. The micro-code is
processed using an iterative process including cubic inter-
polation and an evaluation of a cubic polynomial.

In one embodiment a non-transitory computer-readable
medium having instructions which when executed on a
computer perform a method comprising: generating one or
more transcendental instructions in a graphics processing
unit (GPU). In one embodiment, micro-code for processing
the one or more transcendental instructions is formed in the
GPU. In one embodiment, the micro-code is processed using
an iterative process including cubic interpolation and an
evaluation of a cubic polynomial.

In one embodiment, a GPU for an electronic device
comprises one or more processing elements coupled to a
memory device. In one embodiment, the one or more
processing elements: generate one or more transcendental
instructions in the GPU, form micro-code for processing the
one or more transcendental instructions in the GPU, and
process the micro-code using an iterative process including
cubic interpolation and an evaluation of a cubic polynomial.

These and other aspects and advantages of one or more
embodiments will become apparent from the following
detailed description, which, when taken in conjunction with
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2

the drawings, illustrate by way of example the principles of
the one or more embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the nature and advantages of
the embodiments, as well as a preferred mode of use,
reference should be made to the following detailed descrip-
tion read in conjunction with the accompanying drawings, in
which:

FIG. 1 shows a schematic view of a communications
system, according to an embodiment.

FIG. 2 shows a block diagram of architecture for a system
including a mobile device including a graphical processing
unit (GPU) module, according to an embodiment.

FIG. 3 illustrates packing including one or more units of
work.

FIG. 4 shows an example processing element architecture,
according to an embodiment.

FIG. 5 shows an example SIMT architecture.

FIG. 6 shows an example SIMT transcendental micro-
Architecture, according to an embodiment.

FIG. 7 shows an example reciprocate representation,
according to an embodiment.

FIG. 8 shows an example reciprocal square root repre-
sentation, according to an embodiment.

FIG. 9 shows an example square root representation,
according to an embodiment.

FIG. 10 shows an example sin function representation,
according to an embodiment.

FIG. 11 shows an example In 2(x) representation, accord-
ing to an embodiment.

FIG. 12 shows an example 2**x function representation,
according to an embodiment.

FIG. 13 shows example operation code (OpCode) table
entries, according to an embodiment.

FIG. 14 shows an example micro-code pipeline, accord-
ing to an embodiment.

FIG. 15 shows an example processing structure with a
register file sequencer, according to an embodiment.

FIG. 16 shows an example four stages of calculations over
a number of cycles, according to an embodiment.

FIG. 17 shows an example transcendental cubic interpo-
lation table, according to an embodiment.

FIG. 18 shows a block diagram for a process for tran-
scendental micro-code processing, according to one embodi-
ment.

FIG. 19 is a high-level block diagram showing an infor-
mation processing system comprising a computing system
implementing one or more embodiments.

DETAILED DESCRIPTION

The following description is made for the purpose of
illustrating the general principles of one or more embodi-
ments and is not meant to limit the inventive concepts
claimed herein. Further, particular features described herein
can be used in combination with other described features in
each of the various possible combinations and permutations.
Unless otherwise specifically defined herein, all terms are to
be given their broadest possible interpretation including
meanings implied from the specification as well as meanings
understood by those skilled in the art and/or as defined in
dictionaries, treatises, etc.

One or more embodiments provide organizing multiple
instructions into schedulable structure referred to as a trace.
In one embodiment, a trace is a region of code that contains
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a number of instructions and the following properties: a
trace will not begin execution until specified events have
occurred; a trace will not begin execution until all required
resources are available; and a trace once entered into execu-
tion, executes to completion. In one or more embodiments,
the trace bundles a plurality of instructions into a single
schedulable unit. The trace contains a header (e.g., a trace
header). In one embodiment, the trace header includes a list
of resources that the multiple instructions in the trace need
or require. In one embodiment, when all needed/required
resources are available, the trace may be scheduled, and a
large plurality of instructions may execute such that no stalls
will occur.

In one embodiment, in addition the trace header is orga-
nized to simplify matching of resource requests to available
resources, and the SIMT scheduling process. In one embodi-
ment, because the trace runs to completion, the data-path
may be augmented with a small low overhead tunnel register
file. In one or more embodiments, the tunnel file reduces the
power of accessing the register file of a GPU pipeline. In one
embodiment, results and operands may be stored in the
tunnel register file for subsequent use within a trace, reduc-
ing the number of register file accesses. In one embodiment,
the tunnel register file does not persist across trace bound-
aries and thus may be considered inexpensive with respect
to context switching and SIMT scheduling. In one embodi-
ment, the shader compiler may use the tunnel register file as
a small repository and avoid many read and many write
accesses to the register file, which reduces power consump-
tion.

One or more embodiments provide for micro-code exer-
cising control over the shader data path in a GPU. In one
embodiment, the SIMT execution engine is augmented with
micro-coded instruction execution. Most instructions are
processed without the use of micro-code in a normal SIMT
mode. In one embodiment, when a micro-coded instruction
is detected, micro-code may take over the execution pipe-
line, perform a series of micro-code instructions, and then
return the execution pipeline back to normal instruction
processing.

In one or more embodiment, transcendental instructions
are processed by micro-code. In one embodiment, by uti-
lizing cubic interpolation and Horner evaluation of the cubic
polynomial, comparable performance is achieved as com-
pared to conventional approaches, but at a lower physical
area (e.g., less hardware is required, such as memory,
processing elements, etc.) and at comparable power require-
ments using reduced physical structures. In one example
embodiments, the processing steps of eight transcendental
instructions are described below, including the coeflicient
tables, indexing schemes, and which micro-code instruc-
tions are processed on which cycles.

In one embodiment, as opposed to Quadratic Interpola-
tion, a cubic interpolation scheme is employed and does not
require a squaring circuit, or multiplier trees with odd
shapes, and the computation is iterative rather than a sin-
gular pass. In one embodiment, micro-coded operation of
the shader data path in a GPU is provided where transcen-
dental instructions are executed using cubic interpolation. In
one example, smaller table size is required as compared to
techniques using quadratic interpolation.

In one embodiment, a method provides for graphics
processing includes generating one or more transcendental
instructions in a GPU. Micro-code is formed for processing
the one or more transcendental instructions in the GPU. The
micro-code is processed using an iterative process including
cubic interpolation and an evaluation of a cubic polynomial.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 1 is a schematic view of a communications system
10, in accordance with one embodiment. Communications
system 10 may include a communications device that initi-
ates an outgoing communications operation (transmitting
device 12) and a communications network 110, which
transmitting device 12 may use to initiate and conduct
communications operations with other communications
devices within communications network 110. For example,
communications system 10 may include a communication
device that receives the communications operation from the
transmitting device 12 (receiving device 11). Although com-
munications system 10 may include multiple transmitting
devices 12 and receiving devices 11, only one of each is
shown in FIG. 1 to simplify the drawing.

Any suitable circuitry, device, system or combination of
these (e.g., a wireless communications infrastructure includ-
ing communications towers and telecommunications serv-
ers) operative to create a communications network may be
used to create communications network 110. Communica-
tions network 110 may be capable of providing communi-
cations using any suitable communications protocol. In
some embodiments, communications network 110 may sup-
port, for example, traditional telephone lines, cable televi-
sion, Wi-Fi (e.g., an IEEE 802.11 protocol), Bluetooth®,
high frequency systems (e.g., 900 MHz, 2.4 GHz, and 5.6
GHz communication systems), infrared, other relatively
localized wireless communication protocol, or any combi-
nation thereof. In some embodiments, the communications
network 110 may support protocols used by wireless and
cellular phones and personal email devices (e.g., a Black-
berry®). Such protocols may include, for example, GSM,
GSM plus EDGE, CDMA, quadband, and other cellular
protocols. In another example, a long range communications
protocol can include Wi-Fi and protocols for placing or
receiving calls using VOIP, LAN, WAN, or other TCP-IP
based communication protocols. The transmitting device 12
and receiving device 11, when located within communica-
tions network 110, may communicate over a bidirectional
communication path such as path 13, or over two unidirec-
tional communication paths. Both the transmitting device 12
and receiving device 11 may be capable of initiating a
communications operation and receiving an initiated com-
munications operation.

The transmitting device 12 and receiving device 11 may
include any suitable device for sending and receiving com-
munications operations. For example, the transmitting
device 12 and receiving device 11 may include a mobile
telephone devices, television systems, cameras, camcorders,
a device with audio video capabilities, tablets, wearable
devices, and any other device capable of communicating
wirelessly (with or without the aid of a wireless-enabling
accessory system) or via wired pathways (e.g., using tradi-
tional telephone wires). The communications operations
may include any suitable form of communications, includ-
ing for example, voice communications (e.g., telephone
calls), data communications (e.g., e-mails, text messages,
media messages), video communication, or combinations of
these (e.g., video conferences).

FIG. 2 shows a functional block diagram of an architec-
ture system 100 that may be used for graphics processing in
an electronic device 120. Both the transmitting device 12
and receiving device 11 may include some or all of the
features of the electronics device 120. In one embodiment,
the electronic device 120 may comprise a display 121, a
microphone 122, an audio output 123, an input mechanism
124, communications circuitry 125, control circuitry 126, a
camera module 128, a GPU module 129, and any other



US 9,471,305 B2

5

suitable components. In one embodiment, applications 1-N
127 are provided and may be obtained from a cloud or server
130, a communications network 110, etc., where N is a
positive integer equal to or greater than 1.

In one embodiment, all of the applications employed by
the audio output 123, the display 121, input mechanism 124,
communications circuitry 125, and the microphone 122 may
be interconnected and managed by control circuitry 126. In
one example, a handheld music player capable of transmit-
ting music to other tuning devices may be incorporated into
the electronics device 120.

In one embodiment, the audio output 123 may include any
suitable audio component for providing audio to the user of
electronics device 120. For example, audio output 123 may
include one or more speakers (e.g., mono or stereo speakers)
built into the electronics device 120. In some embodiments,
the audio output 123 may include an audio component that
is remotely coupled to the electronics device 120. For
example, the audio output 123 may include a headset,
headphones, or earbuds that may be coupled to communi-
cations device with a wire (e.g., coupled to electronics
device 120 with a jack) or wirelessly (e.g., Bluetooth®
headphones or a Bluetooth® headset).

In one embodiment, the display 121 may include any
suitable screen or projection system for providing a display
visible to the user. For example, display 121 may include a
screen (e.g., an LCD screen) that is incorporated in the
electronics device 120. As another example, display 121
may include a movable display or a projecting system for
providing a display of content on a surface remote from
electronics device 120 (e.g., a video projector). Display 121
may be operative to display content (e.g., information
regarding communications operations or information
regarding available media selections) under the direction of
control circuitry 126.

In one embodiment, input mechanism 124 may be any
suitable mechanism or user interface for providing user
inputs or instructions to electronics device 120. Input
mechanism 124 may take a variety of forms, such as a
button, keypad, dial, a click wheel, or a touch screen. The
input mechanism 124 may include a multi-touch screen.

In one embodiment, communications circuitry 125 may
be any suitable communications circuitry operative to con-
nect to a communications network (e.g., communications
network 110, FIG. 1) and to transmit communications opera-
tions and media from the electronics device 120 to other
devices within the communications network. Communica-
tions circuitry 125 may be operative to interface with the
communications network using any suitable communica-
tions protocol such as, for example, Wi-Fi (e.g., an IEEE
802.11 protocol), Bluetooth®, high frequency systems (e.g.,
900 MHz, 2.4 GHz, and 5.6 GHz communication systems),
infrared, GSM, GSM plus EDGE, CDMA, quadband, and
other cellular protocols, VOIP, TCP-IP, or any other suitable
protocol.

In some embodiments, communications circuitry 125 may
be operative to create a communications network using any
suitable communications protocol. For example, communi-
cations circuitry 125 may create a short-range communica-
tions network using a short-range communications protocol
to connect to other communications devices. For example,
communications circuitry 125 may be operative to create a
local communications network using the Bluetooth® proto-
col to couple the electronics device 120 with a Bluetooth®
headset.

In one embodiment, control circuitry 126 may be opera-
tive to control the operations and performance of the elec-
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tronics device 120. Control circuitry 126 may include, for
example, a processor, a bus (e.g., for sending instructions to
the other components of the electronics device 120),
memory, storage, or any other suitable component for con-
trolling the operations of the electronics device 120. In some
embodiments, a processor may drive the display and process
inputs received from the user interface. The memory and
storage may include, for example, cache, Flash memory,
ROM, and/or RAM/DRAM. In some embodiments, memory
may be specifically dedicated to storing firmware (e.g., for
device applications such as an operating system, user inter-
face functions, and processor functions). In some embodi-
ments, memory may be operative to store information
related to other devices with which the electronics device
120 performs communications operations (e.g., saving con-
tact information related to communications operations or
storing information related to different media types and
media items selected by the user).

In one embodiment, the control circuitry 126 may be
operative to perform the operations of one or more appli-
cations implemented on the electronics device 120. Any
suitable number or type of applications may be imple-
mented. Although the following discussion will enumerate
different applications, it will be understood that some or all
of the applications may be combined into one or more
applications. For example, the electronics device 120 may
include an automatic speech recognition (ASR) application,
a dialog application, a map application, a media application
(e.g., QuickTime, MobileMusic.app, or MobileVideo.app),
social networking applications (e.g., Facebook®, Twitter®,
etc.), an Internet browsing application, etc. In some embodi-
ments, the electronics device 120 may include one or
multiple applications operative to perform communications
operations. For example, the electronics device 120 may
include a messaging application, a mail application, a voice-
mail application, an instant messaging application (e.g., for
chatting), a videoconferencing application, a fax application,
or any other suitable application for performing any suitable
communications operation.

In some embodiments, the electronics device 120 may
include a microphone 122. For example, electronics device
120 may include microphone 122 to allow the user to
transmit audio (e.g., voice audio) for speech control and
navigation of applications 1-N 127, during a communica-
tions operation or as a means of establishing a communica-
tions operation or as an alternative to using a physical user
interface. The microphone 122 may be incorporated in the
electronics device 120, or may be remotely coupled to the
electronics device 120. For example, the microphone 122
may be incorporated in wired headphones, the microphone
122 may be incorporated in a wireless headset, the micro-
phone 122 may be incorporated in a remote control device,
etc.

In one embodiment, the camera module 128 comprises
one or more camera devices that include functionality for
capturing still and video images, editing functionality, com-
munication interoperability for sending, sharing, etc. photos/
videos, etc.

In one embodiment, the GPU module 129 comprises
processes and/or programs for processing images and por-
tions of images for rendering on the display 121 (e.g., 2D or
3D images). In one or more embodiments, the GPU module
may comprise GPU hardware and memory (e.g., the pro-
cessing element 400 architecture (FIG. 4), processing struc-
ture 600 (FIG. 6), pipeline 1400 (FIG. 14), static random
access memory (SRAM), dynamic RAM (DRAM), process-
ing elements, cache, etc.).
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In one embodiment, the electronics device 120 may
include any other component suitable for performing a
communications operation. For example, the electronics
device 120 may include a power supply, ports, or interfaces
for coupling to a host device, a secondary input mechanism
(e.g., an ON/OFF switch), or any other suitable component.

FIG. 3 shows a diagram 300 of example WARP structures
including one or more units of work. In one example, a unit
of work is a set of input data that will pass through a shader
<program> to produce an output data set. In one embodi-
ment, the compiler bundles 1, 2, or 4 units of work into a
single thread in order to efficiently process data of different
sizes. This bundle is known as a pack. The number of
elements in a pack determines how less than full width
computations are performed, as shown in the diagram 300.
In one example, braid -1 310 shows a thread with a unit of
work 305 0, braid -2 320 shows a thread with units of work
305 0 and 1, and braid -4 330 shows a thread with units of
work 305 0, 1, 2 and 3.

In one example, a number of work units 305 are bound
into a thread and then a number of threads are bound
together to execute a shader <program> into a structure
referred to as a WARP. A WARP binds a multiplicity of work
units 305 into a single point of control. In one example
embodiment, the WARP may contain up to 32 threads, and
a compiler of a GPU (e.g., part of the GPU module 129, FIG.
2) may pack up to 4 units of work 305 (e.g., braid -4 330)
into a single thread. In one example embodiment, the
braiding factor determines the placement of input data into
the threads of a WARP. In one embodiment, a processing
element 400 (FIG. 4) may process up to 8 WARPs. In one
example embodiment, each WARP is associated with
64-registers in the scalar register file. In one example
embodiment, each scalar register is 32-bits in size. In one
example embodiment, a 3-bit WARP Identifier is concat-
enated with the scalar register specifier in an instruction in
order to fully address a scalar register file. In one example
embodiment, all threads in the WARP share the same scalar
register file.

In one example embodiment, a thread is a point of control
within a WARP. Each thread is associated with a <thread>
Register File. In one example embodiment, a thread may be
allocated as few as 8 and as many as 256 registers with 8
register granularity. In one example embodiment, the WARP
carries a register base address which relocates instruction
register specifiers into Register File addresses. In one
example embodiment, the Register File 420 (FIG. 4) con-
tains 32 KBytes of storage, which may be allocated to
various WARPs. In one example embodiment, when the
shader program uses 32 or fewer registers per thread, all 8
WARPs may be active simultaneously. In one embodiment,
WARPs from different shaders may have different sized
Register Files. In one example embodiment, the size of a
given Register File 420 is found in a shader header.

In one example embodiment, a 2-bit WARP braiding field
identifies the mode of operation of the threads within the
WARP. In one embodiment, the braiding enables the com-
piler of the GPU to produce optimal codes when shader
programs utilize half precision and quarter precision instruc-
tions. In one example embodiment, the instructions compute
2 or 4 units of work 305 in a single instruction per thread
when braided. In one example embodiment, the units of
work 305 are governed by an execution mask, one bit of
each mask governs a unique unit of work over the WARP. In
one example embodiment, each instruction in a shader
<program> identifies the associated unit of work 305 so that
it may be properly governed. In one embodiment, the
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execution mask is manipulated to effect predication and
control transfer. In one example embodiment, a simple code
sequence performs most of the manipulation with compares
instructions with label instructions.

In one embodiment, a WARP executes instructions on
behalf of all bound threads in such a way that each instruc-
tion sees the results of the previous instruction and may use
such as operands immediately via forwarding or with some
delay by utilizing a tunnel file. In one example embodiment,
a trace is a shader program fragment and consists of a trace
header and a number of instructions. In one example
embodiment, the trace header contains a set of resources that
must be available prior to running the instructions with the
trace and a set of bit vectors of outstanding <previous>
request that must have been performed prior to scheduling
this WARP back into execution. The WARP scheduler uses
this information in deciding which WARP to schedule
<next>.

In one example embodiment, a trace has a limited maxi-
mum size (in the range of 64 to 128 instructions), and the
compiler of the GPU will break a trace when the instruction
sequence is too long, or when an instruction needs an
outstanding request as an operand (such as a Load result or
a texture result.). In one embodiment, a WARP is in one of
4 states, Idle, Initializing, Executing, or Waiting. Once
configured and initialized, the WARP may be scheduled into
operation when the resources required are available. In one
example embodiment, once scheduled the WARP will
execute all of the instructions in a trace. This gives the
WARP scheduler time to find a subsequent WARP that may
enter execution (again).

In one example embodiment, an Idle WARP may be
assigned work units 305, assigned a shader program, and
allocated a Register File 420 (FIG. 4). A shader constructor
initializes a WARP by moving units of work 305 to the
Register File 420, fixed function requests may be pre-
processed, and then the WARP may be scheduled into
execution. After Initialization WARPs toggle between the
Waiting and Executing states until the end of the shader
<program> at which time they return to the Idle state.

In one example embodiment, a WARP waits at a trace
header. In one embodiment, the trace header contains the list
of events that must take place before scheduling the WARP
(back) into execution and resources required to run the trace
to completion. Once the resources are available and the
events have occurred, the WARP becomes a candidate. In
one example embodiment, the WARP scheduler picks from
among the contending WARP candidates for the next WARP
to enter execution.

In one example embodiment, after the WARP is sched-
uled, the WARP scheduler preloads the Loop Buffer 410
(FIG. 4) by shipping the instructions in a trace from the
instruction cache to the instruction decoder in the Loop
Buffer 410. The instruction decoder decodes the instruction
and places the decoded information into the Loop Buffer
410. In one example embodiment, once the trace is installed
in the Loop Buffer 410, the WARPs may be scheduled.

In one embodiment, the WARP scheduler keeps track of
which traces are loaded into the Loop Buffer 410 and skips
the installation if the trace is already present. In one example
embodiment, the WARP scheduler prioritizes WARPs pend-
ing on the same trace over WARPs pending on a trace yet to
be loaded. In one embodiment, a WARP may be configured
to perform several units of work 305. In one example
embodiment, the WARP may begin interpolation and texture
accesses prior to the start of the pixel shader program. In one
embodiment, the register file allocation is deferred until
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these computations are ready to deliver values to the Reg-
ister File 420 (FIG. 4). The Register File 420 is then
allocated and parts of it are prefilled with input data. In one
example embodiment, any required scalar data is also writ-
ten into the scalar register file.

FIG. 4 shows an example processing element 400 archi-
tecture that may be used for implementing one or more
embodiments. In one embodiment, the processing element
400 comprises of 8 lanes 401-402 of computation, a Register
File 420, and a Loop Buffer 410. In one embodiment, the
Loop Buffer 410 contains a small instruction cache, the
instruction decoder and the instruction sequencer. In one
embodiment, a register comprises a software value that may
be delivered into computation and received from computa-
tion, and the Register File 420 is an organization of SRAM
instances that holds registers.

In one example embodiment, the floating-point multiply-
add (FMAD) units perform single precision floating point
arithmetic instructions and are instrumental in micro-code
implementing the transcendental instructions. In one
embodiment, the Integer unit performs most integer arith-
metic, logic operations, and memory address calculations. In
one example embodiment, the BIT manipulation unit per-
forms bit manipulation operations. In one embodiment,
pipeline time flows strictly downward except for the two
forwarding paths back to the computation unit input multi-
plexers. In one example embodiment, the structures at the
top of the processing element 400 are the same packet data
protocol (PDP) SRAM components as the structures at the
bottom of the processing element 400. In one example
embodiment, the upper PDP SRAM components are used to
read operands and deliver them into computation, while the
lower PDP SRAM components are used to write computed
values back into the Register File 420.

In one embodiment, for the processing element 400 only
four operand flip-flops may satisfy the needs of the collec-
tors. In one example embodiment, both normal sequencing
{Single Precision, Half Precision and Quarter Precision}
and special functional units (SFU) sequencing {Double
Precision and certain Integer instructions} may be satisfied
by accessing the SRAMs slightly differently. In one example
embodiment, the registers are used in even-odd pairs for the
first two accesses and in even-even and odd-odd pairs on the
second set of accesses, which complicate the control but
saves the number of required multiplexors.

FIG. 5 shows an example SIMT architecture for an
FMAD unit 450, which may be modified by one or more
embodiments. The FMAD unit 450 is composed of a number
of sections; the exponent section 455, the multiplication
section 460, the accumulation section 465, and the normal-
ization section 470. The multiplication section 460 is con-
figured to perform 24-bit*24-bit unsigned multiplication,
and to perform two 12-bit bit 12-bit unsigned multiplica-
tions. The result of these multiplications is in carry save
format, using two bits to represent one binary value.

The accumulation section 465 is configured to perform
the final addition from the carry save format multiplication
and at the same time add in a third operand. The accumu-
lation section 465 is 48 bits wide and results in a 48-bit
result. Should the third operand cause massive cancellation
of the high order bits, the lower order bits are renormalized
back into the fraction bits. This protection enables code
sequences such as:

A=X*Y

B=X*Y-A
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to have the property that A contains the properly rounded
result of the multiplication, while B contains all of the bits
that failed to make it into A. Thus:

A+B=X*Y
that is A+B contains all of the bits formed in the multipli-
cation of X*Y. This reduces the cost of exact floating point
multiplication arithmetic from 10 instructions to 2. This
property is used in puCoding multi-precision arithmetic
sequences.

The FAD3 instruction is the additive relation to FMAD in
access to exact floating point arithmetic at low cost. This
protection enables code sequences such as:

A=X+Y

B=X+Y-A
to have the property that A contains the properly rounded
result of the addition, while B contains all of the bits that
failed to make it into A. Thus:

A+B=X+Y
And no precision has been lost. This reduces the cost of
exact floating point addition arithmetic from 6 instructions
to 2.

The normalization section 470 finished the floating point
calculation including renormalization of the fraction, round-
ing of the computed result, processing of NANSs, Infinities,
and denormals in lieu of delivering an improper result. The
following are example instructions processed by the FMAD
unit 450.

For the FMAD A*B+C instruction, the exponents of the
multiplication inputs (A and B) are added (and de-biased)
and then compared to the exponent of the addend (C).
Should C be greater, the fraction associated with C is passed
to the unshifted input of the accumulator; while the redun-
dant output of the multiplier is passed to both shifter inputs,
and both shifters are configured to shift the exponent dif-
ference between C and (A+B). Should C be less than, the
fraction associated with C is passed to the second alignment
shifter and that shifter is configured to shift by the exponent
difference; while the redundant multiplier output is passed to
the accumulator and through the other shifter, this one
configured not to shift.

For the FMUL A*B instruction, the shifters are configured
not to shift, and the SWAP multiplexor routes the multipli-
cation to the accumulator input and through one shifter.

For the FADD A+B instruction, the exponents of the
augends are subtracted and compared. The augend with the
larger exponent passes directly to the accumulator, while the
one with the lessor exponent passes through a shifter con-
figured to align it with the larger augend.

For the FAD3A+B+C instruction, the exponents are com-
pared. The augend with the largest exponent is routed
directly to the accumulator. The second largest exponent is
routed through one shifter configured to align this augend to
the largest augend. The smallest augend passes through the
second shifter and is aligned to the largest augend.

For the FRACT instruction, this instruction aligns the
binary point and throws away the integer part, delivering the
remaining fractional bits.

For the FMAX, FMIN instructions, these instructions
examine the exponents and fraction and deliver the larger
(MAX) or smaller (MIN). In the case of a NaN, the non-NaN
operand should be delivered. That is:

MAX(NaN, x)==x

For the CVT instruction, this instruction converts one data
type to another. In Table 1 below, the vertical box is the
source type, while the horizontal box is the destination type.
In both cases, ‘00’ represents a signed integer, ‘01” repre-
sents an unsigned integer, ‘10’ represents a floating point
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value. F-Op is the conversion operation code (OpCode),
conserving space in the Secondary OpCode name space.

TABLE 1
F-Op
0000 Signed Signed
0001 Unsigned
0010 Float
0100 Unsigned Signed
0101 Unsigned
0110 Float
1000 Float Signed
1001 Unsigned
1010 Float

Floating point results are subject to rounding. Integer
conversions are also subject to rounding. The rounding
specification is illustrated in Table 2.

TABLE 2
B RM
000 N/A
010 Round Nearest Even
011 Round Nearest Largest
100 Round +e
101 Round -
110 Round Towards Zero
111 N/A

Round to nearest even is the IEEE-754-1985 standard
rounding mode. Given a result precisely between an odd
number and an even number, choose the one that is even.
Round to nearest largest is the IEEE 754-2008 rounding
mode. Given a result precisely between two successive
numbers, choose the one with the larger magnitude. Round
to positive infinity rounds positive values up and negative
values down, unless the result is precise. Here the inverse of
the sign bit is added to the imprecise fraction. Round to
negative infinity rounds positive values down and negative
values up, unless the result is precise. Here the sign bit is
added to the imprecise fraction. Rounds towards zero is
simple truncation.

The B field specifies that the rounding is to take place at
the lowest fraction bit or at the binary point. Rounding at the
binary point supports floating point constructs such as the
FORTRAN AINT, ANINT built in functions; where a float-
ing point value is rounded at its binary point (if present) and
the result remains in floating point format.

The FCMP and FCLASS instructions are floating point
compare instructions and are processed by the integer unit
by performing a sign magnitude comparison and a bit of
logic to develop a TRUE or FALSE value. There are six
comparisons available in each value format {signed integer,
unsigned integer, and floating point}. If the floating point
formats, a comparison with one operand a NaN results in a
FALSE result, and comparisons between two zeros results in
a TRUE result.

The floating point classify instruction is processed by the
exponent path without need of the operand path except for
an all zero check of the fraction bits. This instruction
classifies floating point operands into five forms of three
entries each: NaN, SNaN, and QNaN; Infinity, +Infinity, and
—Infinity; Finite, +Finite, and —Finite; Denorm, +Denorm,
and -Denorm; Zero, +Zero, and —Zero. The instruction
delivers a TRUE or FALSE result.
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The exponent section 455 may be configured to perform
two partial precision exponent (5-bit) manipulations, one
single precision exponent (8-bit) manipulation or one double
precision exponent (11-bit) manipulation per pass. Both
adders (e.g., Ling and McFarland adders) are based on 3-bit
components, so combining 4 such sections allows mapping
of the needs to the components. The partial precision expo-
nents are processed in a pair of 6-bit paths, the single
precision exponents are processed in a 9-bit path, while the
double precision exponents are processed in a 12-bit path.

Since the exponents are biased quantities, the additions
and subtractions must preserve the bias of the exponent,
subtracting out the redundant bias when exponents are added
and adding in the bias when exponents are subtracted. This
organization of the exponent section 455 provides one extra
bit of precision for each exponent range and simplifies some
overflow, underflow and denormal handling. The exponent
section 455 is in charge of detecting NaN, Infinity, and
denormal operands, forming an appropriate response and
when possible saving resources (e.g., processing power,
processing area, memory, etc.) by not computing interme-
diate results when the result is known a priori.

The Carry Propagation network of the exponent adders in
the exponent section 455 are enhanced to clip the carry
chains at the appropriate boundaries based on the size of the
operands being processed. The most critical job of the
exponent section is to provide control to the SWAP network.
SWAP routes the component with the largest exponent to the
direct input to the adder, and the operands with lesser
exponents thought the alignment shifters under shift counts
based on the difference of the operand exponent to that of the
largest exponent.

The exponent section 455 is responsible for providing a
special bit to the leading zero detector. The purpose of this
bit is to prevent the leading zero detector from normalizing
a result up passed the point where a denormal number would
be produced. This allows the output of the leading zero
detector to be added to the exponent without fear of over
normalizing a denormal number past the biased
exponent=zero point.

After the normalization count is fed into the exponent
section 455, the exponent is ready to be placed back into the
proper container and delivered as a result. The exponent
section 455 is also responsible for handling the sign bits of
the operands and of the result. The instruction set provides
the ability to negate or absolutize (or both) each input
operand, saving instructions at the cost of some hassle in the
processing of said instructions. Along with the exponent
section 455 exponent manipulations, the instruction set
keeps track of the signs and exercises sign control over
operands entering the accumulator.

The Operand Multiplexor passes either 24-bit fractions
into multiplication (or addition) or a pair of 11-bit partial
precision fractions into multiplication (or addition). In one
embodiment, during transcendental computations, the C012
coeflicient table 650 (FIG. 6) are routed through the C input
multiplexer. In one embodiment, the C3 table 630 is routed
through the B input multiplexer, while the returning value
comes through the Forwarding path through the A input.

There is a large multiplexer between the multiplication
array 460 and the accumulation adder of the accumulation
section 465 known as SWAP. This SWAP multiplexer is in
charge of passing a pair of partial precision (12*12) multi-
plications to the accumulation adder. Alternately, the SWAP
multiplexer may deliver the redundant product of the whole
multiplication (24*24). In order to save power, the inputs to
the unused multiplier sections are held constant. In addition,
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the compressor that adds the four partial precision arrays is
preceded by a phase 2 latch. Should the multiplication be
partial precision, the latch remains in the hold state so the
compressor tree does not assert signals and thus waste
power. Otherwise the latch is made transparent and the
assertions from the multiplier tree proceed with little delay.
The exponent section 455 is in charge (under Loop Buffer
410 (FIG. 4) control) of choosing which pieces of data pass
to which output port of the SWAP multiplexor.

The bits shifted off the end of the two shifters are ORed
together and form the sticky bit in the accumulation section
465. The sticky bit is used in rounding and in particular goes
into the incrementer.

The incrementer performs rounding, and in one embodi-
ment for transcendental calculations, the incrementer also
performs re-centering of the reduced arguments.

The leading zero (I.Z) detector scans the leading zeros of
the output of the adder ORed with the saturation bit from the
exponent section 455. The saturation bit is set on the bit that
would be the hidden bit if a denormalized number was
formed (in the accumulator) and this prevents the [LZ
detector from normalizing the accumulator fraction up past
the point where the exponent would become denormal. The
output of the L.Z detector is used to control the normalization
multiplexer and subtracted from the current exponent to
form the final exponent.

The normalizer unit of the normalization section 470
takes the output of the [.Z detector and up shifts fraction
from the accumulator so that the highest significant bit
occupies the position of the hidden bit. If the L.Z detector
finds a significant bit in the -1, 0, or +1 locations from the
accumulator fraction, then rounding is to be performed and
the result of the incremented is considered along with the
accumulator fraction as the properly rounded result. Other-
wise the output of the normalizer is the finished result.

FIG. 6 shows an example SIMT transcendental micro-
Architecture for an FMAD unit 600, according to an
embodiment. In one embodiment, the transcendental micro-
Architecture FMAD unit 600 includes the following addi-
tional structures from the example architecture 450 (FIG. 5):
the C012 table 650, the C3 table 630, the t-store 640, and the
r-store 620, along with the connections and flow directions
as illustrated. In one embodiment, the r-store 610 is routed
back via 610 to the A input of the multiplier. In one
embodiment, the C012 table 650 includes the coefficients for
the Horner evaluations. In one embodiment, the C012 table
650 is connected as an input to the adder (only) during
evaluations and may be accessed while the multiplications
are in progress.

In one embodiment, the C2 part of the C012 table 650 is
accessed in the first Horner evaluation pass. In one embodi-
ment, the C1 part of the C012 table 650 table is accessed in
the second Horner pass. In one embodiment, the C0 part of
the C012 table 650 is accessed in the final Horner pass. In
one embodiment, each of the table portions (e.g., C2, C1 and
C0) have a different operand width, and in one example
embodiment the ‘multiplexer’ is constructed in OR-gate
form and allows any bits the table produces to pass through.

In one example embodiment, the C012 table 650 may also
be implemented in the direct path from the SWAP multi-
plexer to the adder first input (that does not go through the
alignment networks). In one example embodiment, neither
path is critical and both perform the same task (but the
second option may use less power since the SWAP multi-
plexor is not utilized). In one embodiment, the C3 table 630
is accessed during the last clock cycle of the first pass of the
instruction through the transcendental microArchitecture
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FMAD unit 600 so that the C3 coeflicient is available at the
start of the first Horner evaluation pass.

In one example embodiment, the t-store 640 is four 6-bit
flip-flops or latches used to hold the table indexing function.
The t-store 640 In one embodiment, micro-code supplies the
cycle number and the transcendental number and together
these three items uniquely identify the coefficients. In one
embodiment, the t-store 640 is routed back to the C012
coeflicient table 650, and controlled by the Loop Buffer 410
(FIG. 4). In one embodiment, the Loop Buffer 410 has a
unary signal used to capture the table index into the t-store
640, and a unary control signal used to gate the t-store 640
value back into the C012 coefficient table 650. During all
three passes, the Loop Buffer 410 holds constant the Tran-
scendental function number (also used to index the C012
coeflicient table 650).

In one example embodiment, the r-store 620 is four 32-bit
flip-flops or latches used to hold the reduced argument which
is then used three times during the Horner evaluation. In one
embodiment, the r-store 620 is routed back to the A input of
the multiplier section 460, and controlled by the Loop Buffer
410. In one embodiment, the Loop Buffer 410 has a unary
signal used to capture the reduced argument into the r-store
620, and a unary control signal used to gate the r-store 620
value back into the A input operand source multiplexer.

In one embodiment, Transcendental instructions are pro-
cessed by micro-code stored in the Loop Buffer 410. The
first pass through the FMAD units (e.g., the transcendental
microArchitecture FMAD unit 600 implemented in the
architecture 400) is a pass used to reduce the argument into
proper form for the Cubic interpolation steps. In one
embodiment, in general this first pass manipulates the frac-
tion bits, and finds an appropriate table index which is stored
in the t-store 640; and along with this, the fraction is
manipulated into the reduced fraction along with an expo-
nent, which is then stored in the r-store 620.

In one embodiment, during the first pass, the exponent is
manipulated, and for most Transcendental instructions, the
exponent computed on this first pass does not need to be
processed on the intermediate two passes; and is manipu-
lated only during the normalization stage on the final pass.
In one embodiment, during the two intermediate passes, the
exponent section may be configured into a lowest power
state. In one example embodiment, the first Horner evalu-
ation pass computes the first Horner value (h1) from the C2
and C3 coefficients and the reduced argument r as follows:
h1=C2[t]+C3[t]*r.

In one embodiment, the second Horner evaluation pass
computes the second Horner value (h2) from hl, r, and C1
as follows: h2=C1[t]+h*r.

In one embodiment, the final Horner evaluation pass
computes the purported result Rd from h2, r, and C0 as
follows: RA=CO[t]+h*r.

In one embodiment, two transcendental instructions have
additional passes to add the integer part to the exponent
(2**x, e**x), and one additional transcendental multiplies
the computed result by a constant (1/In 2(e)) to finish the
computation (In(x)).

FIG. 7 shows an example reciprocate representation 700,
according to an embodiment. Reciprocate is a very often
used in computation in graphics processing, and is often
used in place of divide. In one embodiment, reciprocation is
processed under micro-code control in four (4) instruction
equivalent cycles. In one embodiment, the results may be
forwarded to the subsequent instruction, deposited into the
tunnel file, or written back to the Register File 420 (FIG. 4)
as needed.
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In one embodiment, the reciprocal of +zero=>xco and the
reciprocal of xco=>xzero. The reciprocal of a NaN is a NaN.
In one embodiment, the Reciprocation algorithm is based on
Cubic interpolation performed as a Horner evaluation of a
Taylor polynomial with Chebychev coefficients. In one
example embodiment, for Pass 1: Reciprocation begins with
the preprocessing of the exponent field 710 as illustrated in
the example representation 700. In one embodiment, once
the exponent 710 has been preprocessed it is not needed until
the final polynomial evaluation cycle as this preprocessed
exponent is within +1 of the final true exponent.

In one embodiment, the fraction field is examined and
moved to the t-store 640 represented at 730. In one embodi-
ment, this field is used to index the coefficient tables. In one
embodiment, the fraction is realigned to make up for the bits
moved to the t-store 640. In one embodiment, if the high
order bit of the fraction is a ‘1°, the fraction is shifted up by
4 bits, if the high order bit of the fraction is ‘0’ the fraction
is shifted up by 5 bits. In one embodiment, this rearranged
fraction (shown at 720) is stored in the r-store 620 and is
used in the subsequent three cycles as a multiplier in the
Horner evaluation sequence. In one embodiment, after the
final Horner multiply and add are performed through the
adder, the exponent is adjusted by the normalizer in order to
finish the computation.

FIG. 8 shows an example reciprocal square root repre-
sentation 800, according to an embodiment. In one embodi-
ment, reciprocal square root extraction proceeds similarly as
with reciprocation. In one embodiment, the reciprocal
square root of +zero=>+c0 and the reciprocal square root of
+00=>+7zero. In one embodiment, the reciprocal of a NaN is
a NaN. In one embodiment, the reciprocal square root of
—zero=>-o0, the reciprocal of any other negative number is
NaN. In one example embodiment, for Pass 1: reciprocal
square root extraction begins with the preprocessing of the
exponent field 710 as illustrated in the representation 800.

In one embodiment, the low order bit of the exponent is
moved to the t-store 640 as illustrated at 730 and chooses the
range (coefficients) for the Horner evaluation. In one
embodiment, once the exponent has been preprocessed it is
not needed until the final polynomial evaluation cycle as this
preprocessed exponent is within =1 of the final true expo-
nent. In one embodiment, the fields are illustrated for 12 810
and for bias 820. In one embodiment, the high order 4 bits
of the fraction field are moved to the t-store 640. In one
embodiment, this field is used to index the coefficient tables
of the C012 table 650. In one embodiment, the fraction is
realigned to make up for the bits moved to the t-store 640.
The fraction is shifted up by 4 bits. In one embodiment, the
rearranged fraction is stored in the r-store 620 at 720 and will
be used in the subsequent three cycles as a multiplier in the
Horner evaluation sequence. In one embodiment, after the
final Horner multiply and add are performed through the
adder, the exponent is adjusted by the normalizer in order to
finish the computation.

FIG. 9 shows an example square root representation 900,
according to an embodiment. In one embodiment, square
root extraction proceeds similarly as with reciprocation. In
one embodiment, the square root of +zero=>+zero and the
square root of +c0=>+00. The square root of a NaN is a NaN.
In one embodiment, the square root of —zero=>-zero, the
reciprocal of any other negative number is NaN. In one
embodiment, for Pass 1: square root extraction begins with
the preprocessing of the exponent field 710 as illustrated in
the representation 900.

In one embodiment, the low order bit of the exponent is
moved to the t-store 640 as illustrated at 730 and chooses the
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range (coefficients) for the Horner evaluation. In one
embodiment, once the exponent has been preprocessed it is
not needed until the final polynomial evaluation cycle as this
preprocessed exponent is within =1 of the final true expo-
nent. In one embodiment, the fields are illustrated for 12 810
and for bias 920. In one embodiment, the high order 4 bits
of the fraction field are moved to the t-store 640. In one
embodiment, this field is used to index the C012 coefficient
table 650. In one embodiment, the fraction is realigned to
make up for the bits moved to the t-store 640. In one
embodiment, the fraction is shifted up by 4 bits. In one
embodiment, the rearranged fraction is stored in the r-store
620 at 720 and is used in the subsequent three cycles as a
multiplier in the Horner evaluation sequence. In one
embodiment, after the final Horner multiply and add are
performed through the adder, the exponent is adjusted by the
normalizer in order to finish the computation.

FIG. 10 shows an example sin function representation
1000, according to an embodiment. In one embodiment, Sin
proceeds similarly as with reciprocation. In one embodi-
ment, the sin(xo)=>NaN. The sin(NaN)=>NaN. In one
embodiment, for Pass 1: Sin processing begins with the
multiplication of the argument with 2/x at 1010, as illus-
trated in the representation 1000. In one embodiment, the
multiplication is then aligned to the binary point. In one
embodiment, the 2 bits greater than the binary point become
the sign of the result and an indicator that is needed to negate
the fraction. In one embodiment, the four most significant
bits below the binary point become the table index, and the
fraction is then normalized without the table bits being
present.

The processing includes computation for p at 1020, and
the fields are moved into the r-store 620 at 720 and to the
t-store 640 at 730. In one embodiment, after the final Horner
multiply and add are performed through the adder, the
exponent is adjusted by the normalizer in order to finish the
computation. In one embodiment, unlike the earlier tran-
scendentals, the exponent 710 participates in the Horner
evaluation. In one embodiment, the C1 table entry[0] of the
C012 table 650 needs a full 23-bit fraction whereas the rest
only need an 18-bit fraction.

In one embodiment, Cos proceeds similarly as with Sin,
except that 1.0 is conceptually added to the result of the
multiplication. In one embodiment, it is more energy effi-
cient to perform an inversion of the m-bit and if the m-bit
was a ‘1’ then also perform an inversion on the s-bit:

m=-sm<0>

s=sm<1>"sm<0>.

In one embodiment, for Pass 1: Cos processing begins
exactly like Sin, and even uses the Sin coefficient tables. In
one embodiment, the multiplication is aligned to the binary
point. In one embodiment, the 2 bits greater than the binary
point become the sign of the result and an indicator that is
needed to negate the fraction, manipulated as expressed
above. In one embodiment, the four most significant bits
below the binary point become the table index, and the
fraction is then normalized without the table bits being
present. In one embodiment, after the final Horner multiply
and add are performed through the adder, the exponent is
adjusted by the normalizer in order to finish the computa-
tion. In one embodiment, unlike the earlier transcendentals,
the exponent participates in the Horner evaluation.

FIG. 11 shows an example In 2(x) representation 1100,
according to an embodiment. In one embodiment, base 2
logarithm extraction is based on the arithmetic identity:
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In2(x) - In2(1-f=2Ae)
= In2(1- f)+1n2(2 A e)
>In2(l-f)+e

In one embodiment, the In 2(+00)=>+co. The In 2(NaN)
=>NaN. The In 2(x0)=>-c. In one embodiment, the In
2(-number)=NaN, and the In 2(-c0)=>NaN. In one embodi-
ment, for Pass 1: base 2 logarithm extraction begins with the
examination of the fraction at 710 as illustrated in the
representation 1100. In one embodiment, the top 6 bits of the
fraction are moved to the t-store 640 at 730. In one embodi-
ment, if the top 5-bits of the fraction were all ‘00000’ then
the fraction is left shifted by 6-bits, if the top 2-bits are both
‘00’ then the fraction is left shifted by 5-bits, otherwise the
fraction is left shifted by 4-bits.

In one embodiment, the processing continues through the
64 table entry at 1110, the 32 entry table at 1120 and the 16
entry table at 1130. In one embodiment, the rearranged
fraction is stored in the r-store 620 at 720 and will be used
in the subsequent three cycles as a multiplier in the Horner
evaluation sequence. In one embodiment, after the final
Horner multiply and add are performed through the adder,
the exponent is adjusted by the normalizer in order to finish
the computation. In one embodiment, for cycle 5: at this
point the exponent field is added to the fraction field with
respect to the binary position. In one embodiment, the output
range of the previously computed fraction is [0.0 . . . 1.0),
so computational accuracy is used when adding the debiased
exponent to the fraction.

In one embodiment, for In(x) the natural logarithm pro-
ceeds exactly like the base 2 logarithm except that the
argument is multiplied by 1/ln 2(e) under the arithmetic
identity:

In(x)=ln 2(x)*1/In 2(e).

In one embodiment, in this case when it comes to nor-
malizing the fraction after the removal of the t-bits, there are
bits output of the multiplication that shift up into the vacated
positions, improving accuracy at essentially no computa-
tional cost. In one embodiment, the Horner evaluation takes
the same number of cycles as the base 2 logarithm and
excepting for the multiplication, the sequence is identical,
including the tables being indexed.

In one embodiment, for log(x) the natural logarithm
proceeds exactly like the base 2 logarithm except that the
argument is multiplied by 1/ln 2(e) under the arithmetic
identity:

log(x)=In 2(x)*1/In 2(10).

In one embodiment, in this case, when it comes to
normalizing the fraction after the removal of the t-bits, there
are bits output of the multiplication that shift up into the
vacated positions, improving accuracy at essentially no
computational cost. In one embodiment, the Horner evalu-
ation takes the same number of cycles as the Base 2
logarithm and excepting for the multiplication, the sequence
is identical, including the tables being indexed.

FIG. 12 shows an example 2**x function representation
1200, according to an embodiment. Base 2 exponentiation is
based on the following arithmetic identity:

2nx > 2a(int + fract)

—2nintx2A0- fract)
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-continued
0- fract [0.0 ... 1.OY
20 fract [LO ... 2.0)

In one embodiment, the 2°(-00)=>+0, 2"(+00)=>+00,
2"(NaN)=>NaN. In one embodiment, for Pass 1: base 2
exponentiation begins with the alignment of the fraction to
the binary point so that the integer parts and the fractional
parts may be separated. In one embodiment, once separated,
the integral part is added to the exponent. In one embodi-
ment, the processing proceeds for determining p at 1210,
and a+b+1 at 1220. In one embodiment, the fractional part
has its high order 4 bits removed and placed in the t-store
640 at 730, the remaining bits become the normalized
fraction and stored in the r-store 620 at 720, as illustrated in
the representation 1200. In one embodiment, after the final
Horner multiply and add are performed through the adder,
the exponent is adjusted by the normalizer in order to finish
the computation.

In one embodiment, for e**x natural exponentiation is
based on the following arithmetic identity:

e"x=2"(x*In 2(e)).

In one embodiment, the argument to this transcendental is
multiplied by 1n 2(e) and then the fraction is aligned to the
binary point. In one embodiment, once aligned to the binary
point the rest of this transcendental is identical with the base
2 exponentiation transcendental including the tables.

In one embodiment, for 10**x base 10 exponentiation is
based n the following arithmetic identity:

10"x=2"(x*1n 2(10)).

In one embodiment, the argument to this transcendental is
multiplied by 1n 2(e) and then the fraction is aligned to the
binary point. In one embodiment, once aligned to the binary
point the rest of this transcendental is identical with the base
2 exponentiation transcendental including the tables.

In one embodiment, The Loop Buffer 410 (FIG. 4)
contains an instruction store, the micro-code instruction
table, the instruction decoder, and interfaces to various
external components. In one example embodiment, instruc-
tions are decoded after fetching them from the instruction
store. In one embodiment, the current instruction set is easily
decoded. In one embodiment, the Loop Buffer 410 maintains
complete control over the computation pipeline. In one
embodiment, the calculation pipeline comprises several
components receiving commands and timing from the Loop
Buffer 410.

In one embodiment, an instruction is fetched from the
Instruction Store, decoded, and then passed down the 15
stage pipeline. In one embodiment, however, most of the
stages in the pipeline are held constant over four cycles. In
one embodiment, in this view, the pipeline is only four
stages long. In one embodiment, fields of the decoded
instruction are dropped after they are used by the pipeline.
The 4-beat view is also known as a pass. In one embodiment,
there is one flip-flop used to stage new information into the
data-path on a pass basis. The intermediate stages are driven
by three 2-input multiplexers that choose between the pre-
decessor and successor flip flops controlled by a 2 bit
counter.

In one embodiment, the Loop Buffer 410 maintains two
sets of instruction counters. In one embodiment, the first is
used to sequence instructions down the pipeline, while the
second is used to sequence micro-coded instructions down
the pipeline. In one embodiment, the counter is disconnected
from the address from which the instruction resides in
memory or the cache hierarchy. In one embodiment, when a
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micro-coded instruction is decoded, the instruction counter
sequences the required data into computation, and the pipe-
line is “taken away” and given to the micro-code counter. In
one embodiment, instructions already in the pipeline con-
tinue on through the pipeline. In one embodiment, on the
penultimate pass of micro-coded execution, the pipeline is
“given back” to the decoded instruction counter to sequence
results back into the tunnel file, or Register File 420 (FIG.
4). In one embodiment, the micro-code results are available
on the forwarding path to the next decoded (or micro-coded)
instruction.

FIG. 13 shows example OpCode table entries 1300,
according to an embodiment. As shown, the table entries
1300 include columns for instructions 1310, major OpCodes
1320 and 1330 and Minor OpCodes 1340.

In one embodiment, the instruction store contains a small
SRAM of instructions. In one embodiment, prior to decode,
each instruction is 64-bits in size. In one embodiment, as
instructions are entered into the instruction store, they are
examined to see if the instruction is a member of the
activating class of instructions. In one embodiment, if so, a
bit is set in the Activate scan lint. In one embodiment, an
activating instruction is detected when the OpCode has any
of the entries listed in the OpCode table entries 1300.

In one embodiment, the instruction decoder receives
instructions from the instruction store, decodes them and
pipelines them down the instruction pipeline. In one
embodiment, the instruction decoder is capable of decoding
one instruction per cycle. In one embodiment, with the
current instruction set, the decoder’s work is rather simple
and straightforward. In one embodiment, most of the work
is conditionally moving a field from the instruction to the
appropriate field of the decoded instruction after detecting a
few fixed bit patterns.

In one embodiment, the Size and Group specifiers denote
the size of the operands and results, along with which part(s)
of the execution mask that govern the execution of this
instruction. In one embodiment, there is a 5-bit Major
OpCode in every instruction. In one embodiment, should the
instruction require a large immediate, then this field
becomes the OpCode of the instruction and a 32-bit imme-
diate is available in support of the instruction. In one
embodiment, when the Major OpCode 1330 has the pattern
‘01010’ then the Secondary OpCode becomes the OpCode
and any immediate data is multiplexed out of the second
word from two patterns: the bit field pattern (S-OP has the
pattern ‘001010%) or the Shuffle pattern (S-OP has the
pattern ‘010100’) or the memory pattern (S-OP has the
pattern ‘01100x”).

In one embodiment, compare instructions and logical
instructions contain the Flow-OpCode. In one embodiment,
the Flow OpCode performs an optional data manipulation of
the Execution Mask and modification of the calculated value
delivered to the Scalar register. In one embodiment, this
same field is used in Bit manipulation instruction to define
which bit manipulation instruction is to be processed. In one
embodiment, transcendental instructions contain a micro-
code instruction routine <starting point> T-OP. In one
embodiment, operands are specified by the source register
specifier and by an operand modifier. In one embodiment,
this field may specify a register from the Register File 420
(FIG. 4) where each lane of calculation uses a different
value, a Scalar or Constant Scratch register used by all
members of the WARP identically, the Tunnel supplies each
lane individually, or forwarding where the current result is
consumed immediately as an operand.
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In one embodiment, instructions with 3-register operands
are required to access not more than two registers with the
others coming from Scalar, Constant Scratch, Tunnel, or
Forwarding. In one embodiment, the decoder decodes the
register fields and then determines which register file access
to route to which operand port. In one embodiment, instruc-
tions with immediates have the immediate <possibly> refor-
matted so that it fits on the operand bus from the Loop Buffer
410 (FIG. 4) in the expected bit pattern. 32-bit <large>
immediates are used directly, bit manipulation immediates
have instruction<31:27> moved in to immediate<11:6>,
shuffle instructions have bits instruction<31:27> moved into
immediate<23:18>, and memory reference instructions have
instruction<31:24> moved to immediate<16:9>.

Operand modifiers are either copied from their instruction
locations directly, or they can be set to ‘00’ if the operand is
not subject to modification. If an operand register specifier
does not exist on a particular instruction, the corresponding
field is set to ‘00’. In one embodiment, the Scale and
Saturation fields are either copied directly or set to ‘00” and
0’ if the instruction has no use of the Scale or Saturate
functionality. In one embodiment, the instruction rounding
mode is either copied directly or set to ‘000’ for instructions
where the rounding mode is not defined.

In one embodiment, results are specified by the destina-
tion register specifier, the Scale specifier, and the Saturation
Specifier. In one embodiment, this field may specify that the
computed result be stored in the register file, stored in the
tunnel file, consumed immediately by forwarding, delivered
to the Texture Coordinate Buffer, or delivered to the Emit
Buffer. In one embodiment, after decoding the 64-bit
instruction occupies about 100-bits; 68 of these bits are the
fully decoded field specifiers used to control the data path,
the other 32 are the formatted immediate specified in the
instruction; and 37-bits are stripped off after operand deliv-
ery and any immediate is discarded. In one embodiment,
13-bits control the operation(s) being performed and are
discarded as result delivery begins, and 12-bits control result
delivery.

FIG. 14 shows an example micro-code pipeline 1400,
according to an embodiment. In one embodiment, certain
instructions are more complicated than the calculation units
can deal with in a single pass down the pipeline. In one
embodiment, these instructions are micro-coded. In one
embodiment, the micro-code pipeline 1400 shows a first
normal instruction executing down the pipeline, a second
micro-coded instruction executing down the pipeline, and a
final normal instruction executing down the pipeline. In one
embodiment, shortly after the micro-coded instruction is
decoded, the pipeline is taken over by micro-code. In one
embodiment, 1% instructions before the micro-coded
sequence ends, the pipeline is “given back™ to normal
instruction sequencing.

In one embodiment, the micro-code pipeline 1400 shows
four instruction passes of micro-code execution. In one
embodiment, the take-over and give-back sequencing may
deal with sequences as short as two instruction passes and
unbounded long instruction passes.

In one embodiment, the micro-code instruction store
contains execution control signals used to govern long
running computations, and is placed adjacent to the com-
putation section of the decoded instruction store. In one
embodiment, current micro-code is 28 plnstruction long and
68-bits to control instructions and 32-bits of immediate (as
needed.) In one embodiment, micro-code instructions e"x,
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107x, sin(x), cos(x), In(x), and log(x) require that immediate
fields contain In 2(e), In 2(10), 2/, 1/1n 2(e), and 1/In 2(10),
respectively.

In one embodiment, for fine grained clock gating the
register file’s 420 (FIG. 4) flip-flops (collectors) are con-
trolled by the Read and Write enable bits generated in the
Lane control unit (e.g., the Execution Mask). In one embodi-
ment, only the sub-components of each register that are
active are captured. In one embodiment, the ports to the
Register File 420 are fine grain clock gated by the enable-
ment’s of the Load and Store ports to the Register File 420.
In one embodiment, the computation units receive fine
grained clock gating information from a table in the Loop
Buffer 410. In one embodiment, the instruction OpCode to
be executed in the computation unit indexes this table and a
vector of clock gates are produced. In one embodiment,
these control signals are asserted on clocked flip-flops and at
clock distribution nodes to save power. In one embodiment,
these control signals are used to shut down the computation
sections that are not needed on an instruction by instruction
basis and to avoid gating flip-flops which will not be used in
the delivery of the result.

In one example embodiment, the fine grained clock table
is about 40 bits wide, one bit for each flip-flop in the
computational unit along with a few bits that indirectly
control data-dependent fine grained clock gating. In one
embodiment, micro-code also uses this same fine grained
clock gating table. In one embodiment, the result OUT port
of the PE is clock gated at all times except when the
instruction is delivering data to the OUT.

FIG. 15 shows an example processing structure 1500 with
a register file sequencer and control functional unit (CFU)
1507, according to an embodiment. In one embodiment, the
register file sequencer runs the accesses to the Register File
420 (FIG. 4). In one embodiment, this included instruction
accesses, Load Store accesses. In one embodiment, Load
Store may access the Register File 420 in order to set up a
WARP for scheduling. In one embodiment, the register file
sequencer selects which SRAMs 1506 process which pend-
ing requests and on what cycle. In one embodiment, there
are six requests 1505 that can be pending, 4 read requests
and 2 write requests. In one embodiment, the sequencer
chooses among these candidates and then routs the address
to the appropriate SRAM 1506 which will perform the
access.

In one example embodiment, for normal sequence the
SRAM is composed of Pseudo Dual Ported SRAMs 1506
timed so that Read accesses occur on the high portion of the
clock while write accesses are performed on the low part of
the clock. In one embodiment, the RS1 Register File Read
is guaranteed to access the SRAM 1506 of its choosing in
the first cycle of instruction execution. In one embodiment,
the RS2 register file Read is guaranteed to access the SRAM
1506 of its choosing in the second cycle of instruction
execution. In one embodiment, the RD register file Write is
guaranteed to access the SRAM 1506 of its choosing in the
12™ cycle of instruction execution while the LD register file
Write is guaranteed to access the SRAM 1506 of its choos-
ing in the 13” cycle of instruction execution. In one embodi-
ment, when the RS3 port is required, RS3 is guaranteed by
the compiler not to SRAM instance conflict with the RS2
guaranteed access.

In one embodiment, Store Data Reads are performed
when the SD addresses accesses an SRAM 1506 instance
other than that accessed by the RS1 access. In one embodi-
ment, should there be no RS1 access, the Store Data access
will be performed. In one embodiment, all accesses are
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associated with Read and Write Enable bits which control
which bits are read and which bits are written. In one
embodiment, each control bit governs 8-data bits. In one
embodiment, all accesses take place over 4 cycles over
busses 256-bits wide. In one embodiment, internally the
SRAMs 1506 are read and written 512 bits at a time and
captured in flip-flops topologically close to the SRAM
instances. In one embodiment, instruction register specifiers
are relocated by adding in the base address stored in the
WARP data structure. Memory reference register addresses
are also relocated, and the 9-bit relocated register address is
sent to the Load Store Unit. When the Load or Store is ready
with data, this relocated register address is delivered to the
LD or SD port of the register file sequencer.

In one embodiment, the double precision sequence pro-
ceeds much like the normal sequence addressed above,
except that the sequence occurs over 8 cycles instead of 4,
and the Register File 420 (FIG. 4) is accessed such that the
more significant and lesser significant operands of a double
precision operand follow each other on the operand busses.
In one embodiment, pairs of SRAMs 1506 are read each
cycle the lesser SRAM supplies RS1.hi while the greater
SRAM supplies RS1.1o. In one embodiment, in the second
cycle, again, the lesser SRAM supplies RS2.hi while the
greater SRAM supplies RS2.1o. Results follow a similar
pattern, ¥4 of a pair of SRAMs is written. In one embodi-
ment, this Double Precision access pattern requires 4 flip-
flops at the operand collector. RS1.hi and RS1.1o must have
arrived before RS1.hi and RS2.hi can be sent to be followed
by RS1.lo and RS2.1o.

FIG. 16 shows an example 1600 for four stages (Stage 1
1610, Stage 2 1620, Stage 3 1630 and Stage 4 1640) of
calculations over a number of cycles 1605, according to an
embodiment. In one embodiment, the data path sequencer
runs the data flow (routing) controls between the Register
File 420 (FIG. 4) and the computation units, and delivers the
control signals to the computation units. In one embodiment,
the data path sequencer unit governs the tunnel accesses and
the forwarding network. In one embodiment, the computa-
tion units are controlled by an OpCode which is held
constant over 4 cycles per stage of the computation pipeline,
and staged to the intermediate stage of an instruction pass.
In one embodiment, the OpCode bits are accompanied by
the clock gating control bits.

In one embodiment, there are two OpCode flip-flops
known colloquially as the predecessor and the successor. In
one embodiment, the three intermediate stages are driven
from three 4-way multiplexers controlled by 2-bit counters.
This sequencing minimizes the flip-flops while eliminating
the need of the function unit from performing this work. In
one embodiment, the work performed is distributed over the
8 lanes of computation (e.g., 401/402, FIG. 4). In one
embodiment, example 1600 illustrates how the four stages
of calculation see OpCode over a number of cycles.

In one embodiment, there are three 7-bit counters access-
ing the various stages of instruction execution stored in the
instruction buffer. In one embodiment, the first counter
represents the instruction reading the Register File 420 (FIG.
4) getting ready to begin execution. In one embodiment, the
second represents the instruction being executed. In one
embodiment, the third represents the instruction writing its
results back to the Register File 420. In one embodiment,
micro-code has its own counters so that the instructions may
be properly frozen allowing micro-code to take over the
pipeline and later give it back power efficiently. In one
embodiment, every four clocks the counters increment and
the pipeline is advanced to the next instruction. In one
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embodiment, the 7-bit counter associated with register file
Read is frozen when micro-code takes over the pipeline. In
one embodiment, when micro-code has performed the com-
putation this counter is unfrozen and advances out the end of
the execution pipeline controlling the delivery of computed
results. In one embodiment, micro-code has access to the
t-store 640 (FIG. 6) and r-store 620 of the computation unit
(e.g., FMAD 600) to assist in computing the micro-coded
instruction.

In one embodiment, when an instruction is read out of the
decoded instruction store contains a micro-coded instruc-
tion, the instruction is allowed to read the Register File 420
and control operand delivery to the computation unit and is
then frozen. In one embodiment, the subsequent instruction
is frozen prior to beginning Register File 420 access. In one
embodiment, the first microinstruction comes from the
micro-code entry point table. In one embodiment, transcen-
dental instructions index this table with the T-OP field
(4-bits). In one embodiment, the first micro-code instruction
directs the computation unit to performs the setup stage of
transcendental evaluation, and also transfers control to the
micro-code table itself. In one embodiment, micro-code,
then, runs a series of instructions, and on the last instruction
of the series, it unfreezes the 7-bit counters allowing the
delayed instruction time to access its operand registers, and
allowing the micro-coded instruction to control delivery of
its results to the tunnel file or Register File 420 (FIG. 4).

In one embodiment, micro-code contains a table of
pnstructions and some associated pipeline control bits. In
one embodiment, the entry-point of micro-code is a function
of'the instruction, and the pexecution counter is initialized to
this point. In one embodiment, plnstructions are read out and
the counter incremented every 4 cycles. In one embodiment,
the final plnstruction contains the give-back control bit. In
one embodiment, this is used to unfreeze the pipeline and
re-establish normal instruction sequencing. In one example
embodiment, the micro-code instruction table contains 29
instructions and is allocated 128 instructions.

In one embodiment, the Load Store Sequencer performs
memory reference address generation and ships the gener-
ated addresses to the Load Store Unit. In one embodiment,
addresses are sent to the L.oad Store unit 8 addresses per beat
for 4 beats over a 256-bit address bus. In one embodiment,
the addresses are accompanied by 8 Lane Enable bits to
determine which memory references are active, and 32 Data
Enable bits to determine which register bytes are participat-
ing with this memory request. The data accesses to the
Register File 420 are managed by the register file sequencer.
In one embodiment, should there be a buffer limitation in the
Load Store Unit, the Load Store Unit will assert the Buffer
Full signal, and the Processing Element will stall if it
encounters another memory reference.

In one embodiment, the EMIT sequencer ships data from
the data-path to a fixed function unit with an intermediate
stop in the Emit Buffer. In one embodiment, data is delivered
out of the Processing element 8 words per cycle over 4
cycles as the result of a computation. In one embodiment,
the data is accompanied by Lane Enable bits, and Data
Enable bits.

In one embodiment, the command Output Bus is used to
deliver pieces of information to fixed function units when
the processing element executes an instruction requiring
fixed function unit performance. In one embodiment, this
bus contains the OpCode and destination register specifiers,
and some additional bits from the instruction. In one
embodiment, Load and Store instructions have additional
bits to denote signedness and data size. In one embodiment,
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interpolation instructions have additional bits to denote what
kind of interpolation is requested, and upon which attribute.
In one embodiment, the Interpolator has a means to associate
WARP ID with primitive ID in order to index the Plane
Equation Tables. In one embodiment, sample instructions
have additional bits to denote what kind of sample is to be
performed, and an index into the sampler decoder ring table.

In one embodiment, the Loop Buffer 410 (FIG. 4) con-
tains a Find First scanner. In one embodiment, when the
Execution Mask becomes empty (for any reason) there are
no instructions which will execute normal instructions. In
one embodiment, only instructions that can potentially
enable currently idle threads need to be considered for
execution. In one embodiment, the Loop Buffer 410 scans
forward for Activating instruction. In one embodiment, this
takes zero time plus one instruction pass after the instruction
that clobbers the last EM enable bits. Should there be no
Activating instructions from the current point forward, the
Loop Buffer 410 will end the current WARP and start
processing the next scheduled WARP. In one embodiment,
the WARP scheduler will examine trace headers and migrate
the WARP to the nearest trace that has an Activating
Instruction and <sometime later> will schedule this WARP
back into execution. In one embodiment, the scanner will
advance to the first Activating instruction and that Activating
instruction will execute. In one embodiment, if the WARP
schedule reaches the end of the shader, then the WARP is
done and will be assigned new work and start over at the top.

FIG. 17 shows an example transcendental cubic interpo-
lation table 1700, according to an embodiment. As shown,
the different transcendental instructions have varying entries
per lane.

In one embodiment, micro-code is used to perform certain
calculations efficiently. In one embodiment, the compiler (or
assembly language writer) codes in “SIN” for example; and
the micro-code performs the required calculations over 4
effective instruction periods. In one embodiment, the calcu-
lation includes argument reduction, and polynomial evalu-
ation. In one embodiment, the Micro-code Entry Point table
is used to take over the execution pipeline, perform useful
work in the transition to micro-code, and transfer control to
the micro-code main table. In one example embodiment, the
following example code illustrates the transcendental
instruction entry point table:

rcp 0=RCP,r.s=S1.s,r.e="11111101"-S1.e,
t<3:0>=51.F<22:18>1.f=8 1 £<17:0>,0=c3[0,{]; GOTO HORN
rsqt 0=RSQT,r.s=S1.s,{r.e,t<4>}=(*11011101"-1.¢),
t<3:0>=51.F<22:18>1.f=81.£<17:0>,0=c3[0,]; GOTO HORN
sqrt o=SQRT,rs=S1.s,re="11111101"-S1.e,
t<3:0>=51.F<22:18>1.f=8 1 £<17:0>,0=c3[0,{]; GOTO HORN
sin 0=SIN,f=S1.f*2/pi:binary,r.s=f<1>t<4>=f<0>t<3:0>=f<-1:-3>,
{r.e,r.f}=normalize(SPBIAS,f<-4:-27>),c=C3[o,t]; GOTO
HORN
cos
0=SIN,f=S1.£*2/pi:binary,r.s=f<1> f<0> t<4>=~f<0>,t<3:
0>=f<-1:-3>, {re,r.f}=normalize(SPBIAS,{<-4:-27>),
0=C3[o,t]; GOTO HORN
n2
0=LN,t=S1.f<22:17> r.e=S1.e,r.f=normalize{S1.f<19:0>),
c=C3[o,t];
GOTO LN2
In
0=LN,t=S1.f<22:17> r.e=S1.e,r.f=normalize{S1.f<19:0>),
c=C3[o,t];
GOTO LNE
log
0=LN,t=S1.f<22:17> r.e=S1.e,r.f=normalize{S1.f<19:0>),
c=C3[o,t];
GOTO LOG
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-continued

pow2 o=POW,t=S1.f:binary,r.e=S1.e+t<7:0>r.f=t<-4:-28>,
t=t<-1:-3>,¢=C3[o,t]; GOTO HORN

powe 0=POW,t=S1.f*In2(e):binary,r.e=S1.e+t<7:0> r.f=t<-4:-28>,

t=t<-1:-3>, ¢=C3[0,t]; GOTO HORN

powl0 0=POW,t=S1.f*In2(10):binary,r.e=S1.e+t<7:0>,

r.f=t<—4:-28> t=t<-1:-3>, ¢=C3[0,t]; GOTO HORN.

In one embodiment, In the code listed above, the struc-
tured variable ‘r’ is the reduced argument and will be stored
in the r-store 620 (FIG. 6), while ‘t’ is the index into the
coefficient table (e.g., C012 table 650), and ‘0’ is the
OpCode of the transcendental. In one embodiment, the C3
table 630 output is carried in ‘c’. In one embodiment, most
of the calculations are pure three-stage Horner FMAD
instructions exiting back to normal code after 4 passes. In
one embodiment, ‘0’ is an output of the Loop Buffer 410
(FIG. 4) over the whole micro-coded sequence. In one
embodiment, in the logarithmic evaluations above, the
source operand exponent is left in ‘r.e’ until after polynomial
evaluation. In one example embodiment, the following code,
then, illustrates the rest of the micro-code associated with
transcendental evaluation:

HORN d=c2[o,t]+c*r;
d=c1]o,t]+d*r,penultimate;
d=cO[o,t]+d*r;

LN2 d=c2[o,t]+c*r,noExponent;

d=c1[o,t]+d*r,noExponent;

d=c0Jo,t]+d*r,noExponent,penultimate;

d=d+float(r.e-BIAS);

LNE d=c2[o,t]+c*r,noExponent;
d=c1[o,t]+d*r,noExponent;

d=c0[o,t]+d*r,noExponent;

d=d+float(r.e-BIAS),penultimate

d=d*1/1n 2(e);

LOG d=c2[o,t]+c*r,noExponent;
d=c1[o,t]+d*r,noExponent;

d=c0[o,t]+d*r,noExponent;

d=d+float(r.e-BIAS),penultimate

d=d*1/In 2(10),

In one embodiment, the entry point table has 11 entries
while the micro-code table has 17 entries. In one embodi-
ment, it is easy to pack and share micro-code entries to
reduce the area footprint, but with the small amount of
micro-code used, there is no need. In one embodiment, the
current pipeline timing for micro-code has micro-code start
with the operands arriving from <wherever> the instruction
specified, and the pipeline restarts at the point where the
computed results are written or forward as specified by the
instruction. In one example embodiment, no ancillary
accesses to the Register File 420 (FIG. 4) or Tunnel files are
required, and the forwarding path is used to loop one Horner
evaluation to the next.

FIG. 18 shows a block diagram for a process 1800 for
graphics processing (e.g., using a GPU of GPU module 129,
FIG. 2, FMAD 600, etc.), according to one embodiment. In
one embodiment, in block 1810 one or more transcendental
instructions are generated in a GPU. In one embodiment, in
block 1820 micro-code for processing the one or more
transcendental instructions in the GPU is formed. In one
embodiment, in block 1830 the micro-code is processed
using an iterative process including cubic interpolation and
an evaluation of a cubic polynomial.

In one embodiment, in process 1800, the iterative process
comprises performing an argument reduction pass and mul-
tiple evaluation passes, wherein the multiple evaluation
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passes determines results of polynomials. In one embodi-
ment, the multiple evaluation passes comprise multiple
Horner evaluation passes. In one embodiment, in process
1800 the one or more transcendental instructions are pro-
cessed using an FMAD (e.g., FMAD unit 600) configured
for processing the one or more transcendental instructions
using a first table (e.g., C012 table 650), a second table (e.g.,
C3 table 630), a first store (e.g., t-store 640) element, and a
second store element (e.g., r-store 620).

In one embodiment, in process 1800, the first table
contains coeflicients for the multiple Horner evaluation
passes, a first portion of the first table is accessed in a first
Horner evaluation pass, and a second portion of the first
table is accessed in a second Horner evaluation pass, and a
third portion of the first table is accessed in a third Horner
evaluation pass. In one embodiment, the second table is
accessed during a last clock cycle of a first pass of an
instruction, wherein a coefficient of the second table is
available at a start of the first Horner evaluation pass.

In one embodiment, in process 1800 the first store element
is used for holding a table indexing function, and the second
store element is used for holding a reduced argument,
wherein the reduced argument is used during each of the
three Horner evaluation passes. In one embodiment, one or
more of the one or more transcendental instructions com-
prise: reciprocal, reciprocal square root, square root, sin, cos,
In 2(x), In(x), log(x), 2**x, e**x, and 10**x determinations.

In one embodiment, in process 1800 a particular set of
coefficients from the first table and the second table are
selected based on the one or more transcendental instruc-
tions and on an argument to the one or more transcendental
instructions, wherein the particular set of coeflicients are
used during the three Horner evaluation passes.

In one embodiment, in process 1800 the GPU is used by
an electronic device (e.g., electronic device 120, FIG. 2).

FIG. 19 is a high-level block diagram showing an infor-
mation processing system comprising a computing system
500 implementing one or more embodiments. The system
500 includes one or more processors 511 (e.g., ASIC, CPU,
etc.), and may further include an electronic display device
512 (for displaying graphics, text, and other data), a main
memory 513 (e.g., random access memory (RAM), cache
devices, etc.), storage device 514 (e.g., hard disk drive),
removable storage device 515 (e.g., removable storage
drive, removable memory module, a magnetic tape drive,
optical disk drive, computer-readable medium having stored
therein computer software and/or data), user interface device
516 (e.g., keyboard, touch screen, keypad, pointing device),
and a communication interface 517 (e.g., modem, wireless
transceiver (such as Wi-Fi, Cellular), a network interface
(such as an Ethernet card), a communications port, or a
PCMCIA slot and card).

The communication interface 517 allows software and
data to be transferred between the computer system and
external devices through the Internet 550, mobile electronic
device 551, a server 552, a network 553, etc. The system 500
further includes a communications infrastructure 518 (e.g.,
a communications bus, cross bar, or network) to which the
aforementioned devices/modules 511 through 517 are con-
nected.

The information transferred via communications interface
517 may be in the form of signals such as electronic,
electromagnetic, optical, or other signals capable of being
received by communications interface 517, via a communi-
cation link that carries signals and may be implemented
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using wire or cable, fiber optics, a phone line, a cellular
phone link, an radio frequency (RF) link, and/or other
communication channels.

In one implementation of one or more embodiments in a
mobile wireless device (e.g., a mobile phone, tablet, wear-
able device, etc.), the system 500 further includes an image
capture device 520, such as a camera 128 (FIG. 2), and an
audio capture device 519, such as a microphone 122 (FIG.
2). The system 500 may further include application modules
as MMS module 521, SMS module 522, email module 523,
social network interface (SNI) module 524, audio/video
(AV) player 525, web browser 526, image capture module
527, etc.

In one embodiment, the system 500 includes a micro-code
processing module 530 that may implement processing
similar as described regarding the processing structure 400
(FIG. 4), FMAD 600 (FIG. 6), pipeline 1400 (FIG. 14) and
processing structure 1500. In one embodiment, the micro-
code processing module 530 may implement the process of
flowchart 1800 (FIG. 18). In one embodiment, the micro-
code processing module 530 along with an operating system
529 may be implemented as executable code residing in a
memory of the system 500. In another embodiment, the
micro-code processing module 530 may be provided in
hardware, firmware, etc.

As is known to those skilled in the art, the aforementioned
example architectures described above, according to said
architectures, can be implemented in many ways, such as
program instructions for execution by a processor, as soft-
ware modules, micro-code, as computer program product on
computer readable media, as analog/logic circuits, as appli-
cation specific integrated circuits, as firmware, as consumer
electronic devices, AV devices, wireless/wired transmitters,
wireless/wired receivers, networks, multi-media devices,
etc. Further, embodiments of said Architecture can take the
form of an entirely hardware embodiment, an entirely soft-
ware embodiment or an embodiment containing both hard-
ware and software elements.

One or more embodiments have been described with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to one or more embodiments. Each block of
such illustrations/diagrams, or combinations thereof, can be
implemented by computer program instructions. The com-
puter program instructions when provided to a processor
produce a machine, such that the instructions, which execute
via the processor create means for implementing the func-
tions/operations specified in the flowchart and/or block
diagram. Each block in the flowchart/block diagrams may
represent a hardware and/or software module or logic,
implementing one or more embodiments. In alternative
implementations, the functions noted in the blocks may
occur out of the order noted in the figures, concurrently, etc.

The terms “computer program medium,” “computer
usable medium,” “computer readable medium”, and “com-
puter program product,” are used to generally refer to media
such as main memory, secondary memory, removable stor-
age drive, a hard disk installed in hard disk drive. These
computer program products are means for providing soft-
ware to the computer system. The computer readable
medium allows the computer system to read data, instruc-
tions, messages or message packets, and other computer
readable information from the computer readable medium.
The computer readable medium, for example, may include
non-volatile memory, such as a floppy disk, ROM, flash
memory, disk drive memory, a CD-ROM, and other perma-
nent storage. It is useful, for example, for transporting
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information, such as data and computer instructions,
between computer systems. Computer program instructions
may be stored in a computer readable medium that can direct
a computer, other programmable data processing apparatus,
or other devices to function in a particular manner, such that
the instructions stored in the computer readable medium
produce an article of manufacture including instructions
which implement the function/act specified in the flowchart
and/or block diagram block or blocks.

Computer program instructions representing the block
diagram and/or flowcharts herein may be loaded onto a
computer, programmable data processing apparatus, or pro-
cessing devices to cause a series of operations performed
thereon to produce a computer implemented process. Com-
puter programs (i.e., computer control logic) are stored in
main memory and/or secondary memory. Computer pro-
grams may also be received via a communications interface.
Such computer programs, when executed, enable the com-
puter system to perform the features of the embodiments as
discussed herein. In particular, the computer programs,
when executed, enable the processor and/or multi-core pro-
cessor to perform the features of the computer system. Such
computer programs represent controllers of the computer
system. A computer program product comprises a tangible
storage medium readable by a computer system and storing
instructions for execution by the computer system for per-
forming a method of one or more embodiments.

Though the embodiments have been described with ref-
erence to certain versions thereof; however, other versions
are possible. Therefore, the spirit and scope of the appended
claims should not be limited to the description of the
preferred versions contained herein.

What is claimed is:

1. A method for graphics processing comprising:

obtaining at least one transcendental instruction in a

graphics processing unit (GPU);

forming micro-code for processing the at least one tran-

scendental instruction in a shader data path in the GPU,
wherein the micro-code supplies a clock cycle number;
and

processing the micro-code based on the clock cycle

number and an index to a first table using an iterative
process including cubic interpolation and an evaluation
of a cubic polynomial.

2. The method of claim 1, wherein the iterative process
comprises performing an argument reduction pass and mul-
tiple evaluation passes, and the multiple evaluation passes
determines results of polynomials.

3. The method of claim 2, wherein the multiple evaluation
passes comprise multiple Horner evaluation passes.

4. The method of claim 3, wherein the at least one
transcendental instruction is processed using a floating point
multiplier and addition unit (FMAD) configured for pro-
cessing the at least one transcendental instruction using the
first table, a second table, a first store device, and a second
store device.

5. The method of claim 4, wherein the first table contains
coeflicients for the multiple Horner evaluation passes, a first
portion of the first table is accessed in a first Horner
evaluation pass, a second portion of the first table is accessed
in a second Horner evaluation pass, and a third portion of the
first table is accessed in a third Horner evaluation pass.

6. The method of claim 5, wherein the second table is
accessed during a last clock cycle of a first pass of an
instruction, and a coeflicient of the second table is available
at a start of the first Horner evaluation pass.
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7. The method of claim 6, wherein the first store device is
used to hold a table indexing function, and the second store
device is used to hold a reduced argument, and the reduced
argument is used during each of the three Horner evaluation
passes.

8. The method of claim 7, wherein the at least one
transcendental instruction comprises: reciprocal, reciprocal
square root, square root, sin, cos, In 2(x), In(x), log(x), 2**x,
e**x, and 10**x determinations.

9. The method of claim 8, wherein a particular set of
coefficients from the first table and the second table are
selected based on the at least one transcendental instruction
and on an argument to the at least one transcendental
instruction, and the particular set of coeflicients are used
during the three Horner evaluation passes.

10. The method of claim 1, wherein:

the GPU is used by an electronic device;

the micro-code comprises a sequence of micro-coded

instructions; and

the processing of the micro-code comprises:

switching an instruction pipeline of the GPU from a
first mode to a second mode, the second mode
providing control of the instruction pipeline for
iterative processing of the micro-code; and

in response to processing the micro-code, switching the
instruction pipeline to the first mode for pipelined
processing of the instruction pipeline.

11. The method of claim 10, wherein:

the electronic device comprises a mobile electronic

device; and

the processing of the micro-code further comprises:

responsive to the switching of the instruction pipeline
to the second mode:
freezing a first counter of the instruction pipeline;

and
incrementing a second counter of the instruction
pipeline; and

responsive to the switching the instruction pipeline to
the first mode:
incrementing the first counter.

12. A non-transitory computer-readable medium having
instructions which when executed on a computer perform a
method comprising:

obtaining at least one transcendental instruction in a

graphics processing unit (GPU);

forming micro-code for processing the at least one tran-

scendental instruction in a shader data path in the GPU,

wherein the micro-code supplies a clock cycle number;
and

processing the micro-code based on the cycle number and

an index to a first table using an iterative process

including cubic interpolation and an evaluation of a

cubic polynomial.

13. The medium of claim 12, wherein the iterative process
comprises performing an argument reduction pass and mul-
tiple evaluation passes, and the multiple evaluation passes
determines results of polynomials.

14. The medium of claim 13, wherein the multiple evalu-
ation passes comprise multiple Horner evaluation passes.

15. The medium of claim 14, wherein the at least one
transcendental instruction is processed using a floating point
multiplier and addition unit (FMAD) configured for pro-
cessing the at least one transcendental instruction using the
first table, a second table, a first store device, and a second
store device.

16. The medium of claim 15, wherein the first table
contains coefficients for the multiple Horner evaluation
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passes, a first portion of the first table is accessed in a first
Horner evaluation pass, a second portion of the first table is
accessed in a second Horner evaluation pass, and a third
portion of the first table is accessed in a third Horner
evaluation pass.

17. The medium of claim 16, wherein:

the second table is accessed during a last clock cycle of a

first pass of an instruction;

a coefficient of the second table is available at a start of

the first Horner evaluation pass;

the first store device is used to hold a table indexing

function;

the second store device is used to hold a reduced argu-

ment; and

the reduced argument is used during each of the three

Horner evaluation passes.

18. The medium of claim 17, wherein the at least one
transcendental instruction comprises: reciprocal, reciprocal
square root, square root, sin, cos, In 2(x), In(x), log(x), 2**x,
e™¥x, and 10**x determinations, a particular set of coeffi-
cients from the first table and the second table are selected
based on the at least one transcendental instruction and on an
argument to the at least one transcendental instruction, and
the particular set of coefficients are used during the three
Horner evaluation passes.

19. The medium of claim 12, wherein:

the GPU uses a single-instruction multiple-thread (SIMT)

processing architecture;

the GPU is employed by an electronic device;

the micro-code comprises a sequence of micro-coded

instructions; and

the processing of the micro-code comprises:

switching an instruction pipeline of the GPU from a
first mode to a second mode, the second mode
providing control of the instruction pipeline for
iterative processing of the micro-code; and

in response to processing the micro-code, switching the

instruction pipeline to the first mode for pipelined

processing of the instruction pipeline.

20. A graphics processing unit (GPU) for an electronic
device comprising:

at least one processing element coupled to a memory

device, wherein the at least one processing element is

configured to:

obtain at least one transcendental instruction in the
GPU, form micro-code to process the at least one
transcendental instruction in a shader data path in the
GPU, wherein the micro-code supplies a clock cycle
number, and process the micro-code based on the
clock cycle number and an index to a first table using
an iterative process including cubic interpolation and
an evaluation of a cubic polynomial.

21. The GPU of claim 20, wherein the iterative process is
configured to perform an argument reduction pass and
multiple evaluation passes, and the multiple evaluation
passes are configured to determine results of polynomials.

22. The GPU of claim 21, wherein the multiple evaluation
passes comprise multiple Horner evaluation passes.

23. The GPU of claim 22, wherein the at least one
transcendental instruction is processed using a floating point
multiplier and addition unit (FMAD) configured to process
the at least one transcendental instructions using the first
table, a second table, a first store device, and a second store
device.

24. The GPU of claim 23, wherein the first table contains
coeflicients for the multiple Horner evaluation passes, a first
portion of the first table is accessed in a first Horner
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evaluation pass, a second portion of the first table is accessed
in a second Horner evaluation pass, and a third portion of the
first table is accessed in a third Horner evaluation pass.

25. The GPU of claim 24, wherein:

the second table is accessed during a last clock cycle of a

first pass of an instruction;

a coeflicient of the second table is available at a start of

the first Horner evaluation pass;

the first store device is configured to hold a table indexing

function;

the second store device is configured to hold a reduced

argument; and

the reduced argument is used during each of the three

Horner evaluation passes.

26. The GPU of claim 25, wherein the at least one
transcendental instruction comprises: reciprocal, reciprocal
square root, square root, sin, cos, In 2(x), In(x), log(x), 2**x,
e**x, and 10**x determinations.

27. The GPU of claim 26, wherein a particular set of
coefficients from the first table and the second table are
selected based on the at least one transcendental instruction
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and on an argument to the at least one transcendental
instruction, and the particular set of coeflicients are used
during the three Horner evaluation passes.

28. The GPU of claim 21, wherein the GPU uses a
single-instruction multiple-thread (SIMT) processing archi-
tecture.

29. The GPU of claim 28, wherein:

the electronic device comprises a mobile electronic

device;

the micro-code comprises a sequence of micro-coded

instructions; and

the at least one processing element is configured to

process the micro-code to:

switch an instruction pipeline of the GPU from a first
mode to a second mode, the second mode providing
control of the instruction pipeline for iterative pro-
cessing of the micro-code; and

in response to processing the micro-code, switch the

instruction pipeline to the first mode for pipelined
processing of the instruction pipeline.
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